If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x=34
We move all terms to the left:
4x^2+16x-(34)=0
a = 4; b = 16; c = -34;
Δ = b2-4ac
Δ = 162-4·4·(-34)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-20\sqrt{2}}{2*4}=\frac{-16-20\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+20\sqrt{2}}{2*4}=\frac{-16+20\sqrt{2}}{8} $
| -96=6z | | 4x-67=666 | | 14m=-70 | | 7x-12=2(4x-5) | | 24x-144=-56x+8 | | 3b+-12=5b+-2 | | -31=5(y-3)-7y | | X+0.09x=45 | | -8x-33=-10-11x-103 | | 36=18a | | 10x-3x+102=10x+57 | | 3x^2-100=35 | | y=3*12-3*4+8 | | |4x-2|=18 | | 1/6y+1/6(y+12)-2=1/3 | | (x+4)^2=16 | | z/5+3=-5 | | 34x+35x-100=110 | | 9n+4n=6 | | 15x-150+20x=35x+120 | | 6a-11=33 | | 15x-2=27x+5 | | 2(x+2)^2=40 | | y=5(12)-3(4)+8 | | 2b/18-9/18=5/18 | | 10-3x=-2(x-4 | | -43+13x=120 | | 5+3x2-6=10 | | +m=-16 | | 1316x=9 | | 6x+3x-11+74=180 | | -2p+9=37 |